引言:
汽车行业在“新四化”目标的牵引下快速发展,汽车电动化与智能化取得了显著的成果。汽车智能化的发展对汽车底盘提出了新的需求,传统汽车底盘在响应速度、执行精度、安全性等方面不再能满足智能汽车的要求,汽车底盘由传统底盘向线控底盘过渡。其中,线控转向(Steering-by-Wire,SBW)是线控底盘中控制横向运动的核心部件,是实现高阶自动驾驶的重要执行机构。国务院印发的《新能源汽车产业发展规划(2021-2035)》中将纯电动汽车底盘一体化、线控执行系统等列为重点技术攻关工程。国标《GB17675-2021汽车转向系基本要求》中删除了不得装用全动力转向机构的要求(1999年的3.3),法规层面已允许转向系统方向盘与转向器之间的物理解耦。国家战略的推动以及法规标准的落地对于线控转向(SBW)产品的大批量产业化应用具有直接的促进作用。本文将从转向技术的发展路径、技术方案、关键技术等方面对英创汇智的线控转向(SBW)解决方案进行详细介绍。
一、转向技术发展路径
转向系统是汽车底盘的关键部件之一,对于汽车的操稳性、安全性、舒适性起到至关重要的作用。随着汽车工业电动化的深入,转向系统经历了从机械转向系统(MS)、机械液压转向助力系统(HPS)到电子液压助力转向系统(EHPS)、电动助力转向系统(EPS)再到线控转向(SBW)的发展历程。
图1-1汽车转向系统发展路径
图片来源:天风证券研究报告《智能电动汽车赛道深度二:线控转向,高阶智能驾驶核心部件》
相比机械和液压转向系统,电动助力转向系统(EPS)的结构更加简单、助力控制响应更快,同时能耗也更低,而且不需要保养和维护,是目前汽车转向系统的主流产品。线控转向(SBW)相比EPS最大区别在于方向盘和执行机构之间无机械连接,因此在成本控制、设计灵活性、功能丰富性、空间布置等方面具有明显优势。
转向系统作为底盘核心零部件,具有很高的技术壁垒。我国汽车工业起步相对较晚,因此当前德国、美国、日本、韩国的供应商巨头仍然占据着转向系统的大部分市场,尤其是高端EPS和线控转向(SBW)系统,国内仍然处于追赶的状态。但是随着国内汽车产业链的日渐成熟,一些企业也开始逐步掌握转向系统的核心技术,未来有望快速提升所占的市场份额。
二、英创汇智线控转向技术方案(T-SBW)
2.1英创汇智T-SBW系统方案
如图2-1所示为英创汇智的线控转向(SBW)系统方案示意图,主要由方向盘执行器(HWA)和前轮执行器(RWA)组成。线控转向(SBW)相比EPS系统最大的却别就是没有中间轴,即方向盘执行器与前轮执行器在机械上是完全解耦的,因此具备更加灵活可调的转向比和更加舒适的路面反馈,同时也为自动驾驶场景下的方向盘静默、方向盘折叠提供了可能性。
图2-1英创汇智T-SBW系统方案示意图
●方向盘执行器(Handwheel Actuator,HWA):主要由方向盘、转向管柱、减速器、TAS传感器、冗余电控单元组成,主要功能是获取驾驶员的意图,并将驾驶员期望的方向盘转角信号给到前轮执行器(RWA),同时根据前轮执行器反馈的齿条力模拟车辆行驶的路面反馈力,为驾驶员提供路感反馈信息。
●前轮执行器(Road Wheel Actuator,RWA):前轮执行器有机械转向器、转角传感器、冗余电控单元等组成,主要功能是接收方向盘执行器(HWA)发送的期望转角指令,并通过控制电机实现齿条的横向移动,最终实现转向功能。
●冗余电控单元(Fail-Operational Powerpack):方向盘执行器(HWA)和前轮执行器(RWA)均需要电控单元作为执行器,分别实现路感反馈控制和前轮转向的功能。而采用冗余的电控单元主要是为了支持高阶自动驾驶工况,即在自动驾驶场景下,如果线控转向(SBW)系统的方向盘执行器(HWA)或前轮执行器(RWA)出现了任何一种单点失效,该部件要具备失效可运行的功能(Fail-Operational)来保证路感不丢失或者前轮不失去转向能力。英创汇智线控转向(SBW)系统的方向盘执行器(HWA)和前轮执行器(RWA)电控单元均采用了全冗余电控方案驱动六相永磁同步电机的方案,单点失效后系统仍然具备路感反馈以及执行转向控制的能力。
●转角传感器(Angle Sensor):前轮执行器(RWA)需要精准地跟踪期望转角,因此需要转角传感器测量实际的小齿轮输入转角。
2.2英创汇智T-SBW电气架构
图2-2英创汇智T-SBW电气架构示意图
如图2-2所示为英创汇智线控转向(SBW)系统的电气架构示意图,其中车辆具备冗余的电源、公共CAN通信网络,方向盘执行器(HWA)和前轮执行器(RWA)均采用全冗余的电控单元,分别接入不同的电源和CAN通信网络,实现独立的两个系统外部的电气隔离。全冗余电控单元两个ECU之间也通过CAN通信来实现信号交互,从而可以进行信号交互、协同控制。方向盘执行器(HWA)和前轮执行器(RWA)之间通过私CAN进行通信,传递期望转角信号、齿条力信号等。方向盘执行器(HWA)的每个ECU需要采集双路转矩信号与单路的绝对转角信号(支持功能安全ASIL D等级),因此对应“4+2”的TAS传感器;前轮执行器(RWA)每个ECU需要采集单路的绝对转角信号(支持功能安全ASIL D等级),因此对应2路转角信号的角度传感器。
2.3英创汇智T-SBW算法架构
如图2-3所示为英创汇智线控转向(SBW)系统算法架构示意图。根据方向盘执行器(HWA)的功能可知主要实现的算法包含参考手力计算、力矩叠加控制、手力跟踪控制、转角叠加控制、变传动比控制、转角指令计算等。可以看出,线控转向(SBW)系统中,方向盘执行器(HWA)实现驾驶员的手感控制依靠力矩闭环的算法,这是与传统EPS的开环力矩算法完全不同的。前轮执行器(RWA)的主要算法包含转角跟踪控制以及齿条力估计算法。转角跟踪控制通过转角传感器测量小齿轮转角作为反馈信号,实现转角的闭环控制,进而实现精准的转向控制。齿条力估计算法对转向器的齿条力进行观测,并作为路感反馈信号发送给方向盘执行器(HWA),实现路感反馈模拟计算。